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The problem of a vortex pair, rising obliquely a t  an angle of 45" toward a deformable 
free surface in a viscous, incompressible fluid, is solved with the aid of the 
Navier-Stokes equations. The full nonlinear boundary conditions at  the free surface 
are applied. The oblique interaction of the vortex pair with the free surface results 
in a number of novel features that have not been observed for the special case of a 
vertical rise, reported earlier. These features include the directional change of 
trajectories near the free surface and the occurrence of waves driven by the vortex 
pair. Moreover, surface tension can completely change the flow characteristics such 
as the direction of the trajectories and the generation of secondary vortices. 
Numerical solutions are presented for selected Reynolds, Froude, and Weber 
numbers. 

1. Introduction 
This investigation is a continuation, complement, and conclusion of two previous 

studies by Ohring & Lugt (1989, 1991, referred to as I and I1 in the following text), 
on two counter-rotating vortices of equal strength (vortex pair) approaching a 
deformable free surface. The purpose of this paper is twofold : to give information on 
the oblique interaction of a viscous vortex pair with a deformable free surface with 
all its implications in two-dimensional motion, and to be a precursor of a three- 
dimensional flow study, planned as a follow-up. 

Vortex pairs, their generation and interaction with boundaries and other vortices, 
have recently become of interest in two main areas : in the study of wave signatures 
caused by ship wakes (Sarpkaya & Henderson 1984; Willmarth et al. 1989), and in 
the study of two-dimensional vortex dynamics. In the first area of ship 
hydrodynamics, two-dimensional vortex pairs have been used to simulate almost 
parallel vortex filaments behind ships or ship models. These filaments are subject to 
three-dimensional disturbances and develop to complex three-dimensional vortex 
configurations. Two-dimensional laminar vortex pairs can provide, at  best, 
information on basic flow characteristics. However, since little is known about 
general vortex/free-surface interaction, such two-dimensional flow studies are of 
great value in understanding essential flow phenomena. In  the second area, stratified 
flows and fluid motions under the influence of external forces, such as magnetic fields 
and rotation, tend to behave two-dimensionally. Here, vortex pairs play a vital role 
in the understanding of two-dimensional coherent flow patterns, in particular of 
turbulent structures (Couder t Basdevant 1986; Nguyen Due & Sommeria 1988 ; 
Dritschel 1989; van Heijst & Flor 1989). 

The vertical approach of a vortex pair toward a free surface has been studied 
extensively, and a brief summary of the literature is given in 11. However, there is 
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FIGURE 1.  Sketch of the flow situation. The dimensional coordinates x ’ ,  y’ are related to the 
dimensionless ones by x’ ,  y’ = ax, ay. The trajectories of the two vortices are solutions of the 
potential-flow problem with a flat’ surface. 

little information on the oblique rise of a vortex pair. Acton (1976) gave a detailed 
account of thc potential-flow solution in which two point vortices approach a surface. 
This solution must be obtained numerically and is given in figure 1 for the inclination 
angle 0 = 45’ as a benchmark. Ersoy & Walker (1986) studied the oblique approach 
of a vortex pair to a non-slip wall. They used an inviscid-flow model with a laminar 
boundary layer. The vort.ex closcr to the wall generates a boundary layer, from which 
a secondary vortex develops. Between primary and secondary vortices an ‘explosive 
boundary-layer growth’ takes placc in the form of a jet perpendicular to the wall. 
This phenomenon has been indicated in experimental observations by Harvey & 
Perry (1971). 

More information is available for the similar problem of a vortex ring approaching 
a surface in an oblique way. This vortex-ring problem has relevance to the present 
study since any circular vortex ring, approaching a surface at an arbitrary 
inclination angle 0, possesses a symmetry plane defined by the translational velocity 
vector and the angle 0. Figure 1 then can bc interpreted as showing such a symmetry 
plane. In  contrast to a two-dimensional filament, however, a vortex ring stretches 
near a boundary and may become unstable or may reconnect. In what follows more 
details of the vortex-ring problem will be given. 

Experiments by Kwon (1989) and Uernal & Kwon (1989) show that a laminar 
vortex ring approaching a water surface obliquely interacts with the surface in two 
different ways: the upper part of the ring breaks open near the surface and its ends 
attach to the surface (‘reconnection process ’), whereas the lower part either behaves 
like a straight piece of filament, producing a secondary vortex filament, or the lower 
part also reconnects a t  the free surface, forming a second half-ring. If both half-rings 
reconnect a t  the free surface, they either propagate away from each other or move 
parallel to each other. This latter behaviour is of particular interest in this study, 
because it can be investigated with a two-dimensional flow model. Experiments by 
Lim (1989) with vortex rings that approach a solid wall obliquely, do not reveal a 
break-up but show helical disturbances in the half-ring closer to the wall. 

Numerical computations for axisymmetric vortex rings and filaments near a free 
surface were made by Dommcrmuth & Yue (1990) with the aid of the Navier-Stokes 
equations. Linearized free-surface boundary conditions were used, and the problem 
of the reconnection process of a vortex filament a t  the free surface was addressed. 
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2. Definition of the flow problem 
Two counter-rotating vortices of equal strength K ,  a distance a apart, rise 

obliquely through self-induction to an initially undisturbed free surface. The fluid is 
assumed to  be incompressible, homogeneous, and Newtonian. The laminar flow 
problem is a transient one, with the fluid coming to rest after an infinitely long time. 
The initially undisturbed free surface is placed a t  y = 0 in a Cartesian coordinate 
system x, y (figure 1). The corresponding velocity components are u and v, 
respectively. At the initial depth H ,  where the vortex pair is placed, the translational 
velocity of the pair is V,, which can be expressed by K through V, = K / U  ( K  is related 
to the circulation r by K = f /2n ) .  The basic equations of motion are made 
dimensionless by the characteristic length a ,  the time a / &  and the velocity V,. The 
pressure is made dimensionless by the stagnation pressure, and gravity is included so 
that the pressure equals pV:(P-y/Fr2) with p the density of the fluid; P is the 
dimensionless dynamic pressure. In addition to the dimensionless de th  6 = H / a ,  the 
flow parameters are the Froude number Fr = V,/(ga)i  = ~ / ( g a ~ ) s ,  the Reynolds 
number Re = V,a/v  = K/v,  and the Weber number We = ua/pK2, where v and g are 
the kinematic viscosity of the fluid and the constant of gravity, respectively. The 
coefficient of surface tension u is considered a constant. 

The initial-boundary-value problem is described by 

P 

u,+vy = 0, (3) 

with t the dimensionless time. The free surface is given by y = Y(x, t )  and is part of 
the solution. For the oblique rise the remaining semi-infinite domain is made finite 
for numerical calculations by the boundaries x = xL1, xLz and y = yL. Then, the 
boundary conditions are 

y =  Y:  yt = v-UY,, (4) 

) ~ , + K ( u ~ + v , )  1 (I.-p-R,.. (1+Y$ ,’ 
= -we y,, y 

y = yI, : P = 0, u, v : obtained by second-order extrapolation along a 
coordinate line into the interior, (7)  

x = XL1, XL2, yL < y < 0:  

P = 0, u, v :  obtained by second-order extrapolation along a 
coordinate line into the interior. (8) 

The following assumptions are made for the initial conditions a t  t = 0 : two point 
vortices 1 and 2 of strengths f~ are introduced a t  the positions (xv, Y , ) ~  = 
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( -al /2 ,6+al /2)  and ( x , , ~ , ) ~  = (+;42,S-+l/2).  The induced flow field is 
irrotational except in the vicinity of the vortex centres. This circular vicinity with 
radius rL is described by the Lamb formula for the decaying potential vortex: 

u p =  - i [ l - e x p ( - q ) ] ,  r2Re r < r L .  
r (9) 

with up = (u2+v2)f and r z  = ( X - X , ) ~ +  ( y - ~ , ) ~ .  The error of using (9), defined by the 
amount of vorticity at r = rL, as a percentage of the maximum core vorticity at 
r = 0, is less than 0.2% for t ,  = 0.25 at rL = a. The numerical computation starts 
at  t = 0. 

The trajectories of two point vortices that approach a flat surface obliquely in a 
potential-flow environment are computed as reference curves. According to Acton 
(1976), only the following two ordinary differential equations are required to 
determine those trajectories : 

1 
_.- dx2 2Y2 + C  -- C + 
dt -= X2+(2y2+c)2 2yz' 

because of the two existing integrals of motion 

Y l V )  = Yz + c, (13) 

in the half-plane y < 0 with X = x2 -xl. The set of equations (10) and (1 1) was solved 
by a Runge-Kutta method. For the inclination angle of 45O, c = cos45', and the 
curves are shown in figures 1 and 4(a). Since the trajectories of the two vortices do 
not start at infinity, there is a minute tilting which is neglected because it is 
irrelevant to this study. For 121 -+ co it  follows from (12) that 

4YlYZ = 1, (14) 

a relation which is satisfied by the curves in figures 1 and 4(a), 

3. Remarks on the numerical procedure 
Since the numerical technique for solving the initial-boundary-value problem is 

described in I, only an outline with additional features pertinent to the new, oblique 
flow situation is given here. Obviously, the total flow field must now be considered, 
rather than only one-half of it as required in the symmetric vertical rise of a vortex 
pair. For all cases computed in this paper, the flow region extends from xL1 = - 8.34 
to xL2 = 13.3 and from yL = -6.0 to the free surface and is represented by 433 x 203 
points; but only a section of the whole flow domain is shown in the figures that 
follow. The number of time steps is of the order of lo5. 

For the numerical solution of the initial-boundary-value problem, defined by 
(1)-(9), it is convenient to make a boundary-fitted coordinate transformation. The 
coordinate lines in physical space are mapped onto a uniformly spaced Cartesian 
mesh with a unit mesh spacing in each coordinate direction. As the flow field evolves 
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in time, the grid in physical space will move and its coordinate lines will be attracted 
to regions of high flow gradients through the use of an adaptive-grid technique. 
However, the Cartesian grid in computational space always remains fixed and 
uniform. This is the major advantage of using a mapping. 

The continuity equation (3) is replaced by an equation with pseudo-compressibility 
for numerically conserving mass at  each physical time step: 

P,+u,+w, = 0. (15) 

r is the pseudo-time. In this technique, pseudo-time steps are required to satisfy the 
continuity equation (3) at each new physical time step At. Spatially varying pseudo- 
time steps that depend on mesh-cell size are used (see I). Typically two to five 
pseudo-time steps are needed per physical time step, their number decreasing with 
smaller physical time steps. Mass conservation was excellent for all cases computed. 

Five partial differential equations for u, w, 2, y, and P must be solved with the 
proper boundary conditions. The finite-difference technique for solving these 
equations is briefly described in the following way. All spatial derivatives, including 
one-sided derivatives at  the boundaries, are replaced by finite-difference operators of 
second order in the computational space. The time-differencing procedure is implicit. 
The dynamic pressure field P a t  t = 0 is obtained by solving a Poisson equation for 
P in terms of the initial velocity field. This is the only time a Poisson equation for 
P is used. A ' four-colour ' scheme is used in the interior of the computational space. 
The use of such a scheme, which can be vectorized, resulted in an order of magnitude 
increase in computer speed on the Cray-XMP 24 on which the computations were 
performed. 

t = 3  - t = 5  

__---. 

- .-- r' 

- 
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FIQURE 3. Streamlines for Re = 100, Fr = 0.2, We = 0 at two different times. 
The arrows indicate stagnation points. 

The computational cycle for one complete pseudo-time step iteration consists of ( a )  
applying the ‘four-colour’ scheme to compute updates for x and y;  ( b )  applying the 
‘four-colour’ scheme to compute updates for u, v, and P ;  (c) obtaining updates for 
u and v from (8) at  successive points along the boundary x = xLl; ( d )  obtaining 
updates for P ,  u, v ,  and Y a t  successive points along the free surface; and (e) 
obtaining updates for u and v from (8) at  successive points along the boundary 
x = xL2 and then along the boundary y = yL from (7) .  

At the completion of this computational cycle, after the latest updates for x, y, u, 
and v satisfy certain convergence criteria at all points, these updates are the solution 
at the new time level n+ 1. If the convergence criteria are not met, cycle (a)-(e) is 
repeated until they are met. The accuracy of the numerical scheme was checked with 
fine grids in I. For the case Fr = 0.4, We = 1,  wave reflection a t  the outer boundary 
x = xL2 was first observed a t  t = 8.50, a t  which time the computation was stopped. 
Reflection did not yet occur in the other cases. 

Streamline pictures show only selected streamlines obtained numerically from the 
velocity fields since the stream function was not computed in this paper. This means 
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that the streamlines selected do not represent equally incremental values of the mass 
flux and that they must be interpreted with caution. 

4. Results 
Following the selection of flow parameters in 11, four different cases, all for 

Re = 100, have been computed: Fr = 0.2, 0.4, 0.8 with We = 0 and Fr = 0.4 with 
We = 1. The flow field for Fr = 0.2 shows the least surface deformation. Equivorticity 
lines and streamlines are plotted in figures 2 and 3, respectively. The interaction of 
the vortices with the free surface is very similar to that of the vortices in the vertical 
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FIGURE 5. Decrease of l ~ ~ ~ ~ ~ ~ ~ ~ ~ l  with time for the primary vortices at all cases. Dotted lines 
represent vortex 1 and solid lines vortex 2. Dashed lines represent equation (16). Curve 
(a )  represents Fr = 0.2, We = 0 and Fr = 0.4, We = 1; curve ( b )  Fr = 0.4, We = 0;  and curve 
(c) Fr = 0.8, We = 0. 

ascent except that here vortex 1 reaches the surface first. The vortex generates a 
scar, to the left of which vorticity of opposite sign (negative vorticity) is created. The 
amount of vorticity generated is, for a fixed or almost fixed surface, twice the surface 
curvature times tangential surface velocity. The negative vorticity field becomes, 
when a local minimum in the vorticity field occurs, a secondary vortex which is shed 
into the flow interior. Meantime, vortex 2 has approached the free surface, but its 
strength has weakened and it is not able to produce a significant scar and a secondary 
vortex. The corresponding streamline patterns for t = 3.0 and 4.0 in figure 3 reveal 
an almost steady free surface with stagnation points between the two primary 
vortices indicated by arrows. The streamlines ending a t  the stagnation points (not 
drawn in figure 3) must always be perpendicular to the free surface in a steady flow 
(Lugt 1987). The two streamlines to the left a t  t = 4.0, ending at  the free surface, are 
not stagnation streamlines but indicate a very weak movement of the free surface. 
This indication has been validated by additional computations not presented here. 

The paths of the vortex centres are shown in figure 4(a).  Vortex 2 follows quite 
closely the path obtained from the potential flow solution, whereas vortex 1 makes 
a sharper turn and stays farther away from the surface. As in the vertical approach, 
the decrease of lwextremuml a t  the vortex centre with time, shown in figure 5 (a) ,  follows 
a relation which is derived from Lamb's formula (9) 

lwextrernuml - 1 
Re 2( t ,+ t )  ' 

as long as the vortex is not weakened by another vorticity field of opposite sign. A 
detailed discussion will follow below. 

In I1 the most dramatic case is Fr = 0.4, We = 0 in the sense that the paths of the 
primary and secondary vortices form loops during the vertical rise. Here, in the 
oblique case, the result is unexpected too, although in a different way. Vortex 1 with 
positive vorticity reaches the free surface first and generates an elevation with a 
sharp scar to the left (figure 6). However, instead of continuing to the left as one 
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FIGURE 6. For caption see page 470. 

would expect, the vortex lingers for a while and then moves to the right (figure 4b). 
The observation that the vortex pair can either separate near the surface or move 
together along the surface is reminiscent of the behaviour of vortex rings which, after 
reconnection to half-rings at the surface, either move away or keep together. During 
the time vortex 1 is trapped, it is stretched and turned. 

In order to analyse this behaviour in more detail, the local flow around the vortex 
is approximated by a vortex in a shear flow. The corresponding inviscid-flow model 
was examined by Kida (1981) and Polvani & Wisdom (1990) for elliptic vortex 
patches (regions with uniform vorticity) and by Dritschel (1089) for non-uniform 
vortices. The major features of such a sheared vortex are rotation or oscillation of the 
elliptic region and ‘stripping, ’ that is, the loss of weaker vorticity at  the highest 
curvature of the elliptic vortex. Larger vorticity gradients at the vortex boundary 
develop with subsequent rounding of the vortex in a flow environment with less 
shearing. This behaviour is observed in figures 6 and 7. The elliptic deformation 
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FIQURE 0. Equivorticity lines for Re = 100, Fr = 0.4, We = 0 at nine different times. 
The w-contours are . . . - 3, - 1 ,  + 1, + 3, . . . . 

starts at about t = 2.5 with stripping and rotation taking place thereafter until 
t z 5.0. Vortex 1 weakens during this process, compared to vortex 2, and has about 
the same strength as the secondary vortex which it creates at the free surface. The 
decrease of Iuextremuml with time for the primary vortices is shown in figure 5 ( b ) .  

Both primary vortices produce during their ascent a steep hump of the free 
surface, vortex 1 at about t = 3.5 and vortex 2 at about t = 5.5. Such a hump was 
observed for the vertical rise too. The generation of positive and negative surface 
vorticity in a narrow local area a t  the scar causes a jet which pushes the surface up. 
The jet is clearly visible in the streamline picture for t = 3.5 in figure 7 .  Once the 
secondary vortex has been established, the newly created pair of vortices (consisting 
of the primary and the secondary vortices) moves downward through mutual 
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FIQURE 7. Streamlines for Re = 100, Fr = 0.4, We = 0 at four different times. 

t = 4.0 

47 1 

FIGURE 8. Equivorticity lines for Re = 100, Fr = 0.4, We = 1 at four different times. The 
w-contours are ...- 3, -1 ,  +1, + 3  ,.... 
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induction. The hump of the free surface collapses. The local eruption of fluid close to 
the secondary vortex is a phenomenon similar to that of the 'explosive boundary 
layer described for the oblique approach of a vortex pair to a non-slip wall by Ersoy 
& Walker (1986). In  that case the direction of the fluid jet obviously is directed away 
from the wall, while both directions are possible a t  a free surface. 

The influence of a constant coefficient of surface tension on the flow field is revealed 
in figures 4(c) and 8 for Fr = 0.4, We = 1. The difference between We = 0 and 
We = 1 is staggering. Flow fields and trajectories of the vortex pair are completely 
different owing to the smoothing of the free surface by the surface tension. In fact, 
there is quite a similarity to the case Fr = 0.2, We = 0 in figures 2 and 4(a) due to 
the weak surface deformation and complete agreement with figure 5 ( a )  for the 
decrease of Iuextremum( with time. 

The flow field for Fr = 0.8, We = 0 exhibits the largest surface disturbance of the 
cases computed. The calculation of the corresponding situation for the vertical rise 
had to be terminated because of the steepness of the surface. The mushroom-like 
shape then indicated possible wave breaking. This is not the case in the 45" ascent. 
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FIGURE 9. Equivorticity lines for Re = 100, Fr = 0.8, We = 0 at nine different times. 
The w-contours are .. . -3, - 1, + 1, + 3 ,  .. . . 

The computation could be carried out to the end desired. Equivorticity lines and 
streamlines are shown in figures 9 and 10, respectively. The vortex pair pushes the 
free surface up during its approach (figure 9, t = 4.0). Vortex 1, being closer to the 
surface and squeezed between the surface and vortex 2, pays its toll by getting 
stretched and sheared and in this process weakened (t = 4.0). Until about t = 5.5 the 
surface elevation is a wave, which consists of the vortex pair beneath, and which 
moves forward with the speed of the vortex pair. Beyond that time the wave crest 
travels on its own while the disintegrating vortex pair creates an irregular trough 
with even a small hump at t = 7.0. At t = 7.5 the trough is filling up, with a final 
upheaval in the form of a pronounced hump. The corresponding streamlines in figure 
10 support this scenario. The direction of the surface movement is indicated by the 
angle of the streamlines at the surface. The trajectories in figure 11 show the joint 
movement of the vortex pair to the right. Rebound and final curling at  t rn 7.5 are 
caused by the passing of the surface trough. 
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FIGURE 1 1 .  Paths of the vortex centres for Re = 100, Fr = 0.8, We = 0. 
The free surface is plotted for the final time t = 7.54. 
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The decrease of I w ~ ~ ~ ~ ~ ~ ~ ~ )  with time is plotted in figure 5 ( c ) .  The results for the 
other cases in figure 5 and for the vertical ascent in 11, permit an assessment to be 
made of the validity of (16) and the subsequent deviation from it. As long as the 
vortices decay like a single vortex, Lamb’s formula (16) holds. The encounter with 
another vorticity field of opposite sign, however, weakens the original vortex, and 
the decay accelerates. This happens in all cases of I1 for the vertical ascent with the 
initial depth of 6 = 3.0 a t  t = 6. In the oblique cases of this paper, the initial depth 
is S = 2.5 and vortex 1, which is closer to the free surface, weakens first from t = 3 
on. The faster decay of vortex 2 starts a t  t = 10, except for Fr = 0.8, in which case 
the starting time is t = 5. 
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The weakening of a vortex by encounters with other vorticity fields of opposite 
sign, created by the free surface or/and by the presence of the partner vortex, may 
be compared with that from the merging of a vortex pair. This merging causes a 
deviation from (16) that was computed by Lo & Ting (1976). The deviation is very 
similar to those in figure 5.  It is conjectured that the curve by Lo & Ting for a 
merging vortex pair approaches asymptotically the form - l/t2, since the leading 
term for the field with K ~ - K ~  = 0 is a decaying dipole. Further weakening by the 
surface as a source of opposite vorticity can happen as the steeper curve in figure 5 ( c )  
indicates. 

The initial behaviour of the vortex pair as single vortices may also explain the 
good agreement of the trajectories with those of the potential-flow solution (figures 
4 a  and 4 c ) ,  provided the free surface is sufficiently flat. Since the circulation of the 
decaying vortices decribed by (9) remains constant with time, the vortices act 
beyond a certain distance like a potential vortex (Ting 1981). At a later time, when 
the various interacting forces are felt throughout the flow field, free surface and 
vortex patterns become surprisingly complex for such a low Reynolds number. 

5. Conclusions 
The interaction of a vortex pair with a deformable free surface in a viscous, 

incompressible, and homogeneous fluid results in flow phenomena which are intrinsic 
to viscous fluid properties. The ascending vortex pair causes elevations and 
indentations of the free surface (that in itself is an inviscid flow effect). Vorticity is 
created at  the curved surface that is a prerequisite for the development of secondary 
vortices. They in turn can influence the trajectories of the primary vortices 
considerably. Not only rebounding has been observed but also complete loops 
performed by both primary and secondary vortices, which rotate around each other. 
Large vorticity gradients between primary and secondary vortices can occur that 
cause strong local upwelling of the surface, similar to boundary-layer ejection on a 
non-slip wall. 

Reynolds-number effects, presented in 11, are studied for Re < 100. Slow-motion 
behaviour is clearly evident for Re = 10, when the flow field is compared with that 
at Re = 50. The qualitative difference between Re = 50 and 100 is, in comparison, 
minor. The decay of the individual vortex follows (16) for a decaying potential vortex 
until vorticity from other sources interferes. 

High and low Froude numbers represent the two extremes of free-surface yielding 
and stiffness, respectively. For Pr = 0.8 the vertically rising vortex pair generates a 
mushroom-like surface deformation which probably will lead to wave breaking. This 
is a conjecture because the actual wave breaking could not be computed. The 45"- 
oblique rise, on the other hand, could be investigated until virtual decay. These 
calculations revealed wave motions driven by the vortex pair beneath. For the low 
Froude number of 0.2 the free surface is barely deformed except for two local 
indentations called 'scars'. In  the oblique case, the trajectory of vortex 2 deviates 
very little from that for potential flow, whereas the trajectory of vortex 1, which is 
closer to the surface, is influenced by secondary vortex 1. 

The oblique rise of the vortex pair can cause special effects, not occurring in the 
vertical rise. The trajectories can change their direction owing to surface effects. A 
vortex may even linger at  a place near the surface and may exhibit the rotating 
behaviour known from the Kida vortex (Fr = 0.4,  We = 0 ) .  

Surface tension can influence the flow field considerably. It can change the 
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direction of the trajectories and can alter the generation process of secondary 
vortices because of surface levelling. 

All computations are restricted to two-dimensional flows. Based on experimental 
evidence of three-dimensional effects, the question arises as to how long the two- 
dimensionality of the flow may remain, even for the flow cases which tend to behave 
two-dimensionally owing to external forces. Instability and three-dimensional effects 
may enforce a different picture, a conjecture that only future investigation will 
clarify. 

This work was supported jointly by the DTRC Independent Research Program 
and by the Office of Naval Research, Fluid Dynamics Program, under Dr E. P. 
Rood. 
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